X
Software Functionality Revealed in Detail
We’ve opened the hood on every major category of enterprise software. Learn about thousands of features and functions, and how enterprise software really works.
Get free sample report

Compare Software Solutions
Visit the TEC store to compare leading software solutions by funtionality, so that you can make accurate and informed software purchasing decisions.
Compare Now
 

 data mining techniques


The Truth about Data Mining
It is now imperative that businesses be prudent. With rising volumes of data, traditional analytical techniques may not be able to discover valuable data

data mining techniques  Truth about Data Mining A business intelligence (BI) implementation can be considered two-tiered. The first tier comprises standard reporting, ad hoc reporting, multidimensional analysis, dashboards, scorecards, and alerts. The second tier is more commonly found in organizations that have successfully built a mature first tier. Advanced data analysis through predictive modeling and forecasting defines this tier—in other words, data mining. Data mining has a significantly broad reach and application. I

Read More


Software Functionality Revealed in Detail

We’ve opened the hood on every major category of enterprise software. Learn about thousands of features and functions, and how enterprise software really works.

Get free sample report
Compare Software Solutions

Visit the TEC store to compare leading software by functionality, so that you can make accurate and informed software purchasing decisions.

Compare Now

Documents related to » data mining techniques

Ask the Experts: Approaches to Data Mining ERP


From one of our readers comes this question: I am a student of IT Management; I have an ERP course and I am supposed to write an article to review new aspects of ERP systems. I’ve decided to explore the reasons for using data mining techniques in ERP systems—and to look at different modules to which these techniques have been applied. I am going to prepare a framework to determine

data mining techniques   Read More

Data, Data Everywhere: A Special Report on Managing Information


The quantity of information in the world is soaring. Merely keeping up with, and storing new information is difficult enough. Analyzing it, to spot patterns and extract useful information, is harder still. Even so, this data deluge has great potential for good—as long as consumers, companies, and governments make the right choices about when to restrict the flow of data, and when to encourage it. Find out more.

data mining techniques   Read More

The Necessity of Data Warehousing


An explanation of the origins of data warehousing and why it is a crucial technology that allows businesses to gain competitive advantage. Issues regarding technology selection and access to historical 'legacy' data are also discussed.

data mining techniques   Read More

Distilling Data: The Importance of Data Quality in Business Intelligence


As an enterprise’s data grows in volume and complexity, a comprehensive data quality strategy is imperative to providing a reliable business intelligence environment. This article looks at issues in data quality and how they can be addressed.

data mining techniques   Read More

Data Warehousing in the Big Data Era: Are You BIReady?


Netherlands-based BIReady automates the process of designing, deploying, and maintaining a data warehousing solution, allowing the optimization of all necessary BI and analytics tasks. Read this TEC product note from TEC senior BI and data management analyst Jorge Garcia to learn more about how BIReady is meeting its goal of helping companies become "BI ready."

data mining techniques   Read More

Governance from the Ground Up: Launching Your Data Governance Initiative


Although most executives recognize that an organization’s data is corporate asset, few organizations how to manage it as such. The data conversation is changing from philosophical questioning to hard-core tactics for data governance initiatives. This paper describes the components of data governance that will inform the right strategy and give companies a way to determine where and how to begin their data governance journeys.

data mining techniques   Read More

Streaming Data and the Fast Data Stack


Big data is data at rest; fast data is streaming data, or data in motion. A stack is emerging across verticals and industries for building applications that process these high velocity streams of data. This new stack, the fast data stack, has a unique purpose: to grab real-time data and output recommendations, decisions, and analyses in milliseconds.

This white paper will look at the emerging fast data stack through the lens of streaming data to provide architects, CTOs, and developers with fundamental architectural elements of the new fast data stack: a LAMP stack for streaming data applications.

data mining techniques   Read More

Deploying High-density Zones in a Low-density Data Center


New power and cooling technology allows for a simple and rapid deployment of self-contained high-density zones within an existing or new low-density data center. The independence of these high-density zones allows for reliable high-density equipment operation without a negative impact on existing power and cooling infrastructure—and with more electrical efficiency than conventional designs. Learn more now.

data mining techniques   Read More

Mining & Quarrying


Mining is the extraction from the earth of materials used in different human activities (industry, trade, energy production, etc.). There are four major types of materials: precious metals and minerals (gold, diamonds, silver, etc.); materials used to produce energy (coal, uranium, etc.); base metals (copper, iron, etc.); and building materials (stone, sand, gravel) extracted from quarries, which are open-pit mines. There are two major types of activities specific to the mining industry: exploration, which involves the search for materials; and extraction, which is the activity of getting those materials out of the earth.

data mining techniques   Read More

Data Management and Analysis


From a business perspective, the role of data management and analysis is crucial. It is not only a resource for gathering new stores of static information; it is also a resource for acquiring knowledge and supporting the decisions companies need to make in all aspects of economic ventures, including mergers and acquisitions (M&As).

For organizational growth, all requirements and opportunities must be accurately communicated throughout the value chain. All users—from end users to data professionals—must have the most accurate data tools and systems in place to efficiently carry out their daily tasks. Data generation development, data quality, document and content management, and data security management are all examples of data-related functions that provide information in a logical and precise manner.

data mining techniques   Read More