X
Software Functionality Revealed in Detail
We’ve opened the hood on every major category of enterprise software. Learn about thousands of features and functions, and how enterprise software really works.
Get free sample report

Compare Software Solutions
Visit the TEC store to compare leading software solutions by funtionality, so that you can make accurate and informed software purchasing decisions.
Compare Now
 

 example of analyzed data


Beware of Legacy Data - It Can Be Lethal
Legacy data can be lethal to your expensive new application – two case studies and some practical recommendations.

example of analyzed data  to SAP IS_U. An example might be a website for a specific group of customers that needed the basic data of those customers, to be able to have a meaningful dialogue on the website. The technical integration with SAP IS-U did succeed. But it didn't work out well... When a customer started using the website, he would typically see only part of his data. The reason: lots of customers had multiple customer records, each telling part of the truth about the customer. The explanation: one customer record might

Read More


Software Functionality Revealed in Detail

We’ve opened the hood on every major category of enterprise software. Learn about thousands of features and functions, and how enterprise software really works.

Get free sample report
Compare Software Solutions

Visit the TEC store to compare leading software by functionality, so that you can make accurate and informed software purchasing decisions.

Compare Now

Outsourcing, IT Infrastructure

The IT Infrastructure Outsourcing knowledge base focuses on the selection of companies who provide outsource services in the areas of information technology (IT) infrastructure. The typical types of activities that these providers perform include data center operations; network operations; backup/recovery services, data storage management services; system administration services; end user support of desktop PCs, laptops, and handheld devices; web site, or application hosting, etc.  

Evaluate Now

Documents related to » example of analyzed data

BI State of the Market Report


IT departments rarely know as much about a business as the business people themselves. But business users still depend on IT to deliver answers related to the information that they receive. Learn how business intelligence (BI) 2.0—also known as collaborative BI—is helping business users create and modify their own reports, share and enrich information, and provide feedback to each other and to information producers.

example of analyzed data   Read More

Role of In-memory Analytics in Big Data Analysis


Organizations today need to handle and manage increasingly large volumes of data in various formats and coming from disparate sources. Though the benefits to be gained from analysis of such big data are immense, so are the inherent challenges, including need for rapid analysis. In his article, TEC BI analyst Jorge García discusses how in-memory analytics helps address these challenges and reap the benefits hidden in big data.

example of analyzed data   Read More

Customer Data Integration: A Primer


Customer data integration (CDI) involves consolidation of customer information for a centralized view of the customer experience. Implementing CDI within a customer relationship management initiative can help provide organizations with a successful framework to manage data on a continuous basis.

example of analyzed data   Read More

Ask the Experts: Approaches to Data Mining ERP


From one of our readers comes this question: I am a student of IT Management; I have an ERP course and I am supposed to write an article to review new aspects of ERP systems. I’ve decided to explore the reasons for using data mining techniques in ERP systems—and to look at different modules to which these techniques have been applied. I am going to prepare a framework to determine

example of analyzed data   Read More

Achieving a Successful Data Migration


The data migration phase can consume up to 40 percent of the budget for an application implementation or upgrade. Without separate metrics for migration, data migration problems can lead an organization to judge the entire project a failure, with the conclusion that the new package or upgrade is faulty--when in fact, the problem lies in the data migration process.

example of analyzed data   Read More

Enterprise Data Management: Migration without Migraines


Moving an organization’s critical data from a legacy system promises numerous benefits, but only if the migration is handled correctly. In practice, it takes an understanding of the entire ERP data lifecycle combined with industry-specific experience, knowledge, and skills to drive the process through the required steps accurately, efficiently, and in the right order. Read this white paper to learn more.

example of analyzed data   Read More

Master Data Management and Accurate Data Matching


Have you ever received a call from your existing long-distance phone company asking you to switch to its service and wondered why they are calling? Chances are the integrity of its data is so poor that the company has no idea who many of its customers are. The fact is, many businesses suffer from this same problem. The solution: implement a master data management (MDM) system that uses an accurate data matching process.

example of analyzed data   Read More

Data Blending for Dummies


Data analysts support their organization’s decision makers by providing timely key information and answers to key business questions. Data analysts strive to use the best and most complete information possible, but as data increases over time, so does the time required to identify and combine all data sources that might be relevant.

Data blending allows data analysts a way to access data from all data sources, including big data, the cloud, social media sources, third-party data providers, department data stores, in-house databases, and more, and become faster at delivering better information and results to their organizations. In the past, the challenge for data analysts has been accessing this data and cleansing and preparing the data for analysis. The access, cleansing, and preparing data stages are complex and time intensive. These days, however, software tools can help reduce the burden of data preparation, and turn data blending into an asset.

Read this e-book to understand why data blending is important, and learn how combining data means that you can get answers to your business questions and better meet your business needs. Also learn how to identify what features to look for in data blending software solutions, and how to successfully deploy these tools within your business. Data Blending for Dummies breaks the subject down into digestible sections, from understanding data blending to using data blending in the real world. Read on to discover how data blending can help your organization use its data sources to the utmost.

example of analyzed data   Read More

The New Virtual Data Centre


Old-style, one application per physical server data centers are not only nearing the end of their useful lives, but are also becoming barriers to a business’ future success. Virtualization has come to the foreground, yet it also creates headaches for data center and facilities managers. Read about aspects of creating a strategy for a flexible and effective data center aimed to carry your business forward.

example of analyzed data   Read More

Reinventing Data Masking: Secure Data Across Application Landscapes: On Premise, Offsite and in the Cloud


Be it personal customer details or confidential internal analytic information, ensuring the protection of your organization’s sensitive data inside and outside of production environments is crucial. Multiple copies of data and constant transmission of sensitive information stream back and forth across your organization. As information shifts between software development, testing, analysis, and reporting departments, a large "surface area of risk" is created. This area of risk increases even more when sensitive information is sent into public or hybrid clouds. Traditional data masking methods protect information, but don’t have the capability to respond to different application updates. Traditional masking also affects analysis as sensitive data isn’t usually used in these processes. This means that analytics are often performed with artificially generated data, which can yield inaccurate results.

In this white paper, read a comprehensive overview of Delphix Agile Masking, a new security solution that goes far beyond the limitations of traditional masking solutions. Learn how Delphix Agile Masking can reduce your organization’s surface area risk by 90%. By using patented data masking methods, Delphix Agile Masking secures data across all application lifecycle environments, providing a dynamic masking solution for production systems and persistent masking in non-production environments. Delphix’s Virtual Data Platform eliminates distribution challenges through their virtual data delivery system, meaning your data can be remotely synchronized, consolidated, and takes up less space overall. Read detailed scenarios on how Delphix Agile Data Masking can benefit your data security with end-to-end masking, selective masking, and dynamic masking.

example of analyzed data   Read More